PASSIVE IP TRACEBACK: DISCLOSING THE LOCATIONS OF IP SPOOFERS FROM PATH BACKSCATTER

ABSTRACT:

It is long known attackers may use forged source IP address to conceal their real locations. To capture the spoofers, a number of IP traceback mechanisms have been proposed. However, due to the challenges of deployment, there has been not a widely adopted IP traceback solution, at least at the Internet level. As a result, the mist on the locations of spoofers has never been dissipated till now.

This paper proposes passive IP traceback (PIT) that bypasses the deployment difficulties of IP traceback techniques. PIT investigates Internet Control Message Protocol error messages (named path backscatter) triggered by spoofing traffic, and tracks the spoofers based on public available information (e.g., topology). In this way, PIT can find the spoofers without any deployment requirement.

This paper illustrates the causes, collection, and the statistical results on path backscatter, demonstrates the processes and effectiveness of PIT, and shows the captured locations of spoofers through applying PIT on the path backscatter data set.

These results can help further reveal IP spoofing, which has been studied for long but never well understood. Though PIT cannot work in all the spoofing attacks, it may be the most useful mechanism to trace spoofers before an Internet-level traceback system has been deployed in real.

 

INTRODUCTION

IP spoofing, which means attackers launching attacks with forged source IP addresses, has been recognized as a serious security problem on the Internet for long. By using addresses that are assigned to others or not assigned at all, attackers can avoid exposing their real locations, or enhance the effect of attacking, or launch reflection based attacks. A number of notorious attacks rely on IP spoofing, including SYN flooding, SMURF, DNS amplification etc. A DNS amplification attack which severely degraded the service of a Top Level Domain (TLD) name server is reported in though there has been a popular conventional wisdom that DoS attacks are launched from botnets and spoofing is no longer critical, the report of ARBOR on NANOG 50th meeting shows spoofing is still significant in observed DoS attacks. Indeed, based on the captured backscatter messages from UCSD Network Telescopes, spoofing activities are still frequently observed.

To capture the origins of IP spoofing traffic is of great importance. As long as the real locations of spoofers are not disclosed, they cannot be deterred from launching further attacks. Even just approaching the spoofers, for example, determining the ASes or networks they reside in, attackers can be located in a smaller area, and filters can be placed closer to the attacker before attacking traffic get aggregated. The last but not the least, identifying the origins of spoofing traffic can help build a reputation system for ASes, which would be helpful to push the corresponding ISPs to verify IP source address.

Instead of proposing another IP traceback mechanism with improved tracking capability, we propose a novel solution, named Passive IP Traceback (PIT), to bypass the challenges in deployment. Routers may fail to forward an IP spoofing packet due to various reasons, e.g., TTL exceeding. In such cases, the routers may generate an ICMP error message (named path backscatter) and send the message to the spoofed source address. Because the routers can be close to the spoofers, the path backscatter messages may potentially disclose the locations of the spoofers. PIT exploits these path backscatter messages to find the location of the spoofers. With the locations of the spoofers known, the victim can seek help from the corresponding ISP to filter out the attacking packets, or take other counterattacks. PIT is especially useful for the victims in reflection based spoofing attacks, e.g., DNS amplification attacks. The victims can find the locations of the spoofers directly from the attacking traffic.

In this article, at first we illustrate the generation, types, collection, and the security issues of path backscatter messages in section III. Then in section IV, we present PIT, which tracks the location of the spoofers based on path backscatter messages together with the topology and routing information. We discuss how to apply PIT when both topology and routing are known, or only topology is known, or neither are known respectively. We also present two effective algorithms to apply PIT in large scale networks. In the following section, at first we show the statistical results on path backscatter messages. Then we evaluate the two key mechanisms of PIT which work without routing information. At last, we give the tracking result when applying PIT on the path backscatter message dataset: a number of ASes in which spoofers are found.

Our work has the following contributions:

1) This is the first article known which deeply investigates path backscatter messages. These messages are valuable to help understand spoofing activities. Though Moore et al. [8] has exploited backscatter messages, which are generated by the targets of spoofing messages, to study Denial of Services (DoS), path backscatter messages, which are sent by intermediate devices rather than the targets, have not been used in traceback. 2) A practical and effective IP traceback solution based on path backscatter messages, i.e., PIT, is proposed. PIT bypasses the deployment difficulties of existing IP traceback mechanisms and actually is already in force. Though given the limitation that path backscatter messages are not generated with stable possibility, PIT cannot work in all the attacks, but it does work in a number of spoofing activities. At least it may be the most useful traceback mechanism before an AS-level traceback system has been deployed in real. 3) Through applying PIT on the path backscatter dataset, a number of locations of spoofers are captured and presented. Though this is not a complete list, it is the first known list disclosing the locations of spoofers.

 

LITRATURE SURVEY

DEFENSE AGAINST SPOOFED IP TRAFFIC USING HOP-COUNT FILTERING

PUBLICATION: IEEE/ACM Trans. Netw., vol. 15, no. 1, pp. 40–53, Feb. 2007.

AUTHORS: H. Wang, C. Jin, and K. G. Shin

EXPLANATION:

IP spoofing has often been exploited by Distributed Denial of Service (DDoS) attacks to: 1)conceal flooding sources and dilute localities in flooding traffic, and 2)coax legitimate hosts into becoming reflectors, redirecting and amplifying flooding traffic. Thus, the ability to filter spoofed IP packets near victim servers is essential to their own protection and prevention of becoming involuntary DoS reflectors. Although an attacker can forge any field in the IP header, he cannot falsify the number of hops an IP packet takes to reach its destination. More importantly, since the hop-count values are diverse, an attacker cannot randomly spoof IP addresses while maintaining consistent hop-counts. On the other hand, an Internet server can easily infer the hop-count information from the Time-to-Live (TTL) field of the IP header. Using a mapping between IP addresses and their hop-counts, the server can distinguish spoofed IP packets from legitimate ones. Based on this observation, we present a novel filtering technique, called Hop-Count Filtering (HCF)-which builds an accurate IP-to-hop-count (IP2HC) mapping table-to detect and discard spoofed IP packets. HCF is easy to deploy, as it does not require any support from the underlying network. Through analysis using network measurement data, we show that HCF can identify close to 90% of spoofed IP packets, and then discard them with little collateral damage. We implement and evaluate HCF in the Linux kernel, demonstrating its effectiveness with experimental measurements

 

DYNAMIC PROBABILISTIC PACKET MARKING FOR EFFICIENT IP TRACEBACK

PUBLICATION: Comput. Netw., vol. 51, no. 3, pp. 866–882, 2007.

AUTHORS: J. Liu, Z.-J. Lee, and Y.-C. Chung

EXPLANATION:

Recently, denial-of-service (DoS) attack has become a pressing problem due to the lack of an efficient method to locate the real attackers and ease of launching an attack with readily available source codes on the Internet. Traceback is a subtle scheme to tackle DoS attacks. Probabilistic packet marking (PPM) is a new way for practical IP traceback. Although PPM enables a victim to pinpoint the attacker’s origin to within 2–5 equally possible sites, it has been shown that PPM suffers from uncertainty under spoofed marking attack. Furthermore, the uncertainty factor can be amplified significantly under distributed DoS attack, which may diminish the effectiveness of PPM. In this work, we present a new approach, called dynamic probabilistic packet marking (DPPM), to further improve the effectiveness of PPM. Instead of using a fixed marking probability, we propose to deduce the traveling distance of a packet and then choose a proper marking probability. DPPM may completely remove uncertainty and enable victims to precisely pinpoint the attacking origin even under spoofed marking DoS attacks. DPPM supports incremental deployment. Formal analysis indicates that DPPM outperforms PPM in most aspects.

 

FLEXIBLE DETERMINISTIC PACKET MARKING: AN IP TRACEBACK SYSTEM TO FIND THE REAL SOURCE OF ATTACKS

PUBLICATION: EEE Trans. Parallel Distrib. Syst., vol. 20, no. 4, pp. 567–580, Apr. 2009.

AUTHORS: Y. Xiang, W. Zhou, and M. Guo

EXPLANATION:

IP traceback is the enabling technology to control Internet crime. In this paper we present a novel and practical IP traceback system called Flexible Deterministic Packet Marking (FDPM) which provides a defense system with the ability to find out the real sources of attacking packets that traverse through the network. While a number of other traceback schemes exist, FDPM provides innovative features to trace the source of IP packets and can obtain better tracing capability than others. In particular, FDPM adopts a flexible mark length strategy to make it compatible to different network environments; it also adaptively changes its marking rate according to the load of the participating router by a flexible flow-based marking scheme. Evaluations on both simulation and real system implementation demonstrate that FDPM requires a moderately small number of packets to complete the traceback process; add little additional load to routers and can trace a large number of sources in one traceback process with low false positive rates. The built-in overload prevention mechanism makes this system capable of achieving a satisfactory traceback result even when the router is heavily loaded. It has been used to not only trace DDoS attacking packets but also enhance filtering attacking traffic.

 

SYSTEM ANALYSIS

EXISTING SYSTEM:

Existing methods of the IP marking approach is that routers probabilistically write some encoding of partial path information into the packets during forwarding. A basic technique, the edge sampling algorithm, is to write edge information into the packets. This scheme reserves two static fields of the size of IP address, start and end, and a static distance field in each packet. Each router updates these fields as follows. Each router marks the packet with a probability. When the router decides to mark the packet, it writes its own IP address into the start field and writes zero into the distance field. Otherwise, if the distance field is already zero which indicates its previous router marked the packet, it writes its own IP address into the end field, thus represents the edge between itself and the previous routers.

Previous router doesn’t mark the packet, then it always increments the distance field. Thus the distance field in the packet indicates the number of routers the packet has traversed from the router which marked the packet to the victim. The distance field should be updated using a saturating addition, meaning that the distance field is not allowed to wrap. The mandatory increment of the distance field is used to avoid spoofing by an attacker. Using such a scheme, any packet written by the attacker will have distance field greater than or equal to the length of the real attack path a router false positive if it is in the reconstructed attack graph but not in the real attack graph. Similarly we call a router false negative if it is in the true attack graph but not in the reconstructed attack graph. We call a solution to the IP traceback problem robust if it has very low rate of false negatives and false positives.

DISADVANTAGES: 

  • Existing approach has a very high computation overhead for the victim to reconstruct the attack paths, and gives a large number of false positives when the denial-of-service attack originates from multiple attackers.
  • Existing approach can require days of computation to reconstruct the attack paths and give thousands of false positives even when there are only 25 distributed attackers. This approach is also vulnerable to compromised routers.
  • If a router is compromised, it can forge markings from other uncompromised routers and hence lead the reconstruction to wrong results. Even worse, the victim will not be able to tell a router is compromised just from the information in the packets it receives problem.

PROPOSED SYSTEM:

We propose a novel solution, named Passive IP Traceback (PIT), to bypass the challenges in deployment. Routers may fail to forward an IP spoofing packet due to various reasons, e.g., TTL exceeding. In such cases, the routers may generate an ICMP error message (named path backscatter) and send the message to the spoofed source address. Because the routers can be close to the spoofers, the path backscatter messages may potentially disclose the locations of the spoofers. PIT exploits these path backscatter messages to find the location of the spoofers. With the locations of the spoofers known, the victim can seek help from the corresponding ISP to filter out the attacking packets, or take other counterattacks. PIT is especially useful for the victims in reflection based spoofing attacks, e.g., DNS amplification attacks. The victims can find the locations of the spoofers directly from the attacking traffic.

We present PIT, which tracks the location of the spoofers based on path backscatter messages together with the topology and routing information. We discuss how to apply PIT when both topology and routing are known, or only topology is known, or neither are known respectively. We also present two effective algorithms to apply PIT in large scale networks. In the following section, at first we show the statistical results on path backscatter messages. Then we evaluate the two key mechanisms of PIT which work without routing information. At last, we give the tracking result when applying PIT on the path backscatter message dataset: a number of ASes in which spoofers are found.

ADVANTAGES:

1) This is the first article known which deeply investigates path backscatter messages. These messages are valuable to help understand spoofing activities has exploited backscatter messages, which are generated by the targets of spoofing messages, to study Denial of Services (DoS), path backscatter messages, which are sent by intermediate devices rather than the targets, have not been used in traceback.

2) A practical and effective IP traceback solution based on path backscatter messages, i.e., PIT, is proposed. PIT bypasses the deployment difficulties of existing IP traceback mechanisms and actually is already in force. Though given the limitation that path backscatter messages are not generated with stable possibility, PIT cannot work in all the attacks, but it does work in a number of spoofing activities. At least it may be the most useful traceback mechanism before an AS-level traceback system has been deployed in real.

3) Through applying PIT on the path backscatter dataset, a number of locations of spoofers are captured and presented. Though this is not a complete list, it is the first known list disclosing the locations of spoofers.

HARDWARE & SOFTWARE REQUIREMENTS:

HARDWARE REQUIREMENT:

 v    Processor                                 –    Pentium –IV

  • Speed       –    1 GHz
  • RAM       –    256 MB (min)
  • Hard Disk      –   20 GB
  • Floppy Drive       –    44 MB
  • Key Board      –    Standard Windows Keyboard
  • Mouse       –    Two or Three Button Mouse
  • Monitor      –    SVGA

SOFTWARE REQUIREMENTS:

  • Operating System        :           Windows XP or Win7
  • Front End       :           JAVA JDK 1.7
  • Document :           MS-Office 2007