PREDICTING ASTHMA-RELATED EMERGENCY DEPARTMENT VISITS USING BIG DATA

ABSTRACT: Asthma is one of the most prevalent and costly chronic conditions in the United States which cannot be cured. However accurate and timely surveillance data could allow for timely and targeted interventions at the community or individual level. Current national asthma disease surveillance systems can have data availability lags of up to two...

PERFORMING INITIATIVE DATA PREFETCHING IN DISTRIBUTED FILE SYSTEMS FOR CLOUD COMPUTING

ABSTRACT: An initiative data prefetching scheme on the storage servers in distributed file systems for cloud computing. In this prefetching technique, the client machines are not substantially involved in the process of data prefetching, but the storage servers can directly prefetch the data after analyzing the history of disk I/O access events, and then...

Optimal Configuration of Network Coding in Ad Hoc Networks

Abstract:  Analyze the impact of network coding (NC) configuration on the performance of ad hoc networks with the consideration of two significant factors, namely, the throughput loss and the decoding loss, which are jointly treated as the overhead of NC. In particular, physical-layer NC and random linear NC are adopted in static and mobile...

ON TRAFFIC-AWARE PARTITION AND AGGREGATION IN MAPREDUCE FOR BIG DATA APPLICATIONS

ABSTRACT: MapReduce job, we consider to aggregate data with the same keys before sending them to remote reduce tasks. Although a similar function, called combine, has been already adopted by Hadoop, it operates immediately after a map task solely for its generated data, failing to exploit the data aggregation opportunities among multiple tasks on...

Network-Based Modeling and Intelligent Data Mining of Social Media for Improving Care

Abstract Intelligently extracting knowledge from social media has recently attracted great interest from the Biomedical and Health Informatics community to simultaneously improve healthcare outcomes and reduce costs using consumer-generated opinion. We propose a two-step analysis framework that focuses on positive and negative sentiment, as well as the side effects of treatment, in users’ forum...

NEIGHBOR SIMILARITY TRUST AGAINST SYBIL ATTACK IN P2P E-COMMERCE

ABSTRACT: In this paper, we present a distributed structured approach to Sybil attack. This is derived from the fact that our approach is based on the neighbor similarity trust relationship among the neighbor peers. Given a P2P e-commerce trust relationship based on interest, the transactions among peers are flexible as each peer can decide...

k-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data

Abstract Data Mining has wide applications in many areas such as banking, medicine, scientific research and among government agencies. Classification is one of the commonly used tasks in data mining applications. For the past decade, due to the rise of various privacy issues, many theoretical and practical solutions to the classification problem have been...

Innovative Schemes for Resource Allocation in the Cloud for Media Streaming Applications

Abstract—Media streaming applications have recently attracted a large number of users in the Internet. With the advent of these bandwidth-intensive applications, it is economically inefficient to provide streaming distribution with guaranteed QoS relying only on central resources at a media content provider. Cloud computing offers an elastic infrastructure that media content providers (e.g., Video...